Транзисторы SiC MOSFET со сверхнизким сопротивлением канала в приводах электромобилей
Развитие SiC-технологии
Прогресс технологии карбида кремния, идущий по пути увеличения диаметра, объема выпуска, повышения качества и снижения стоимости SiC, достиг точки, когда массовое производство 150-мм пластин основано на использовании карбидокремниевых заготовок, как показано на рис. 1. В 2016 календарном году компания Wolfspeed произвела почти 18 тонн 150-мм SiC-пластин [1] для рынков LED-, RF- и силовых приборов с прогнозом дальнейшего роста. Также были продемонстрированы опытные образцы SiC-пластин диаметром 200 мм как пример дальнейшего увеличения диаметра. Качество SiC-пластин непрерывно улучшалось на протяжении нескольких лет, в 2016 году средняя величина MPD (MicropipeDensity) упала до 0,2/см2. Это позволяет выпускать кристаллы SiC MOSFET большой площади, удовлетворяющие требованиям автомобильного стандарта AEC-Q-101.
Удельное сопротивление канала на единицу площади SiC MOSFET, появившихся в 2011 году, продолжает улучшаться. Например, первое поколение SiC MOSFET (серия CMF Wolfspeed [2]), изготовленное в 2011 году, имело удельное значение RDS(ON) при +25 °C около 8 мОм·см2, возрастающее до 11 мОм·см2 при +150 °С. У второго поколения (C2M), появившегося в 2013 году, эта величина существенно снижена, и наконец, SiC MOSFET 1200 В третьего поколения (C3M [3]), выпущенные в 2017 году, характеризуются очередным резким снижением RDS(ON), особенно при рабочей температуре. Как показано на рис. 2, у SiC MOSFET 1200В (C3M0075120K) удельное значение RDS(ON) составляет всего 4,4 мОм·см2 при +150 °C, что на 60% ниже, чем у исходного CMF-транзистора. Особенности конструкции этих приборов описаны в [4]; все три генерации имеют планарную структуру DMOS, при этом в третьем поколении использован более компактный шаг ячейки и оптимизирован процесс легирования в дрейфовой области для снижения сопротивления MOSFET во всем температурном диапазоне. Пиковые электрические поля в структурах SiC MOSFET такие же или меньшие, чем у компонентов предыдущих поколений, поэтому показатели надежности остались на прежнем уровне.
SiC-технология для автомобильных применений
Мировой рост рынка BEV, обеспечивающий соответствие современным стандартам по экономичности и снижению выбросов CO2, требует применения новых полупроводниковых технологий в инверторе привода. Напряжение питания инвертора BEV находится в диапазоне 400–900 Вв зависимости от мощности привода, типа батареи и наличия повышающего конвертера. Поскольку инвертор привода управляет мотором, его рабочая частота обычно не превышает 20 кГц. Преимущество использования более высоких частот здесь состоит только в уходе от слышимого диапазона аудиошумов. Следовательно, основные потери инвертора — это потери проводимости, особенно при малых нагрузках BEV.
Как правило, выбором в таком случае становится кремниевый IGBT, однако присущее ему пороговое напряжение насыщения (из-за его «биполярной» структуры) на малой нагрузке нельзя уменьшить, даже при параллельном включении большого количества IGBT. Карбид кремния имеет в 10 раз более высокую напряженность электрического поля (~3 МВ/см), чем Si, поэтому униполярная SiC MOSFET-структура хорошо подходит для реализации силовых транзисторов 650, 900 и 1200 В благодаря следующим основным особенностям:
- SiC MOSFET не имеют напряжения насыщения, в отличие от Si IGBT; при параллельном включении чипов SiC MOSFET можно снизить сопротивление открытого канала до ≤ 1–2 мОм;
- SiC MOSFET могут реализовать проводимость в третьем квадранте (в отличие от Si IGBT) за счет использования тельного диода в «мертвое» время (время Tdt очень малое у SiC-структур) и последующего открывания канала SiC MOSFET в третьем квадранте, что дает такие же низкие потери в состоянии обратной проводимости, как и при прямой проводимости. Комбинация использования тельного диода в течение «мертвого» времени и синхронного выпрямления исключает необходимость во внешнем антипараллельном диоде, что позволяет снизить габариты и стоимость при минимальном влиянии на эффективность на частотах до 50 кГц; применение SiC MOSFET может снизить потери инвертора в типовом приводном цикле BEV EPA до ~78 % [5].
Результаты
Компания Wolfspeed разрабатывает силовые модули SiC MOSFET с низким сопротивлением канала RDS(ON) для применения в приводе BEV. Базовую технологию SiC MOSFET можно масштабировать в пределах от 650–900 до 1200 В путем простой модификации эпитаксиальной дрейфовой зоны (блокирующий слой) и краевых областей. Базовая топология MOSFET остается одинаковой для всех приборов в указанном диапазоне напряжения, что обеспечивает простоту интеграции в силовые модули.
На рис. 3 иллюстрируется традиционный метод подключения проводников с помощью ультразвуковой сварки к верхней контактной поверхности на примере третьего поколения кристаллов SiC MOSFET. Эта технология может быть использована в модулях 650, 900 или 1200 В при небольшом изменении топологии чипов. Кристаллы SiC MOSFET 900 В с низким сопротивлением канала (10 мОм у CPM3-0900-0010A) уже доступны [6], они были использованы при разработке версии модулей 900 В [5, 7], проверка статических и динамических потерь которых уже проведена. Специалисты компании Ford сравнили измеренные параметры полумостового модуля SiC 900 В с сопротивлением 2,5 мОм (четыре MOSFET-кристалла на ключ) с параметрами 700-В инвертора на базе Si IGBT в двигателе мощностью 90 кВт и выявили среднее снижение потерь на 78% в стандартном приводном цикле EPA [5].
В последнее время большое внимание уделяется технологии спекания чипов SiC [8–10], позволяющей исключить использование сварных проводников при сборке. Одним из основных достоинств является увеличение так называемого прерывающегося срока службы (IOL), поскольку усталостные процессы в сварных соединениях проводников или соединениях кристаллов часто становятся причиной отказов. Другие потенциальные преимущества состоят в лучшем (двухстороннем) охлаждении, лучшем распределении тепла и более высокой стойкости к короткому замыканию. Недавний пример Delphi [10] демонстрирует использование пяти двухсторонних спеченных SiC MOSFET (650 В, 7 мОм) в параллель в одиночном ключе (1,7 мОм), как показано на рис. 4. Спекание кристаллов WolfspeedSiC MOSFET (650 В, 7 мОм) проводилось по верхней и нижней стороне с металлизацией Ni:Au.
Характеристики модуля оказались впечатляющими: сопротивление RDS(ON) (1,7 мОм, 750 A, 25°C) немного увеличивается до 2,3 мОм при +175 °C, как показано на рис. 5 (вверху). Также первый прототип модуля был испытан на термоциклирование путем подачи DC-тока 520 A в каждой фазе (сквозной ток), что дает целевой градиент температуры dTJ 100 K (изменение от +50 до +150 °C). Тестовый цикл продолжался 25 с (испытывалось шесть модулей, все три фазы под током) с 10-с перерывом, прямое напряжение измерялось после 36 000 циклов. Ни на одном из модулей увеличение не превысило 5% за 36 000 циклов, как показано на рис. 5 (внизу). Параллельно с разработкой модулей 650 и 900 В ведется работа над 1200-В SiC MOSFET. У чипа площадью 32 мм2 сопротивление RDS(ON) составляет 13 мОм при комнатной температуре и 23 мОм при +175 °С.
Заключение
Сочетание SiC-пластин большего диаметра (150–200 мм) с улучшенным качеством материалов и достижений технологии SiC MOSFET (понижение на 60% удельного сопротивления RDS(ON) при +150 °C для модулей 1200 Вв течение 2011–17 гг.) позволило получить сверхнизкое (< 15 мОм) сопротивление в коммерческих карбидокремниевых ключах. Модули SiC MOSFET 900 В с RDS(ON) 10 мОм представлены на рынке с января 2017 года.
Совершенствование тяговых приводов BEV с использованием SiC-технологий, позволяющих снизить потери инвертора до ~78% в приводном цикле EPA, может предложить разработчикам систем BEV увеличение пробега или снижение цены батареи при заданном пробеге. Сегодня развитие SiC-технологий направлено на улучшение производительности и надежности карбидокремниевых транзисторов, что было продемонстрировано на примере чипов MOSFET 650 В, 7 мОм, использованных при производстве модулей с двусторонним спеканием с сопротивлением канала 1,7 мОм. Модули предназначены для применения в автомобильных приводных инверторах, которые уже показали очень хорошие характеристики термоциклирования и впечатляюще низкие потери проводимости.
- Balkas E., etal. Status on WBG Materials. ECPE SiC&GaN User Forum. Nuremberg, Germany, Mar. 8–9, 2017.
- Palmour J. et al. SiC MOSFET and Power Module Status and Market Development. WIPDA, Fayetteville, AR (USA). Nov. 20, 2016.
- Casady J. et al. Advances in ultra-low RDSON SiC power MOSFETs. IWBGPEAW. Stockholm, Sweden, May 22–23, 2017. wolfspeed.com/media/dow nloads/959/C3M0075120K.pdf /ссылка утеряна/
- Pala V. et al. Record-low 10mΩSiC MOSFETs in TO-247, Rated at 900V. APEC, Long Beach, CA (USA), Mar. 20–24, 2016.
- Ming Su et al. Prospects for the Application of SiC Power Devices in Hybrid Electric Vehicle Drive Systems. WIPDA, Fayetteville, AR (USA), Nov. 20, 2016.
- Casady J. et al. First Automotive Reliability Assessment and Drive-Train Performance of Large-Area 900V, 10 mOhmSiC MOSFETs. APEC, Tampa, FL (USA), Mar 29, 2017.
- Casady J. et al. Ultra-low (1.25mΩ) On-Resistance 900V SiC 62 mm Half-Bridge Power Modules Using New 10 mΩSiC MOSFETs. PCIM Europe. Nuremberg, Germany, May 10–12, 2016.