SiC-диоды Шоттки: снижение потерь в режиме жесткой коммутации
Введение
Кремниевый (Si) IGBT, сочетающий в себе выходные и динамические характеристики биполярного транзистора и легкость управления MOSFET, стал основным силовым ключом, используемым в режиме жесткой коммутации в высоковольтных (более 500 В) и мощных (более 500 Вт) устройствах. К типичным областям применения относятся инверторы приводов, источники бесперебойного питания, сварочное оборудование и импульсные источники питания (SMPS).
Постоянно растущий спрос на повышение эффективности, упрощение системы охлаждения, уменьшение габаритов элементов силовой электроники, а также более строгие требования к уровню излучаемых помех EMI/RFI и качеству электроэнергии создают новые проблемы для разработчиков. Выполнение этих требований в значительной степени связано со снижением потерь включения IGBT при работе на индуктивную нагрузку в режиме жесткой коммутации. Ток обратного восстановления, наблюдаемый при выключении кремниевых оппозитных диодов, напрямую влияет на потери включения IGBT. Проблема усугубляется тем, что ток обратного восстановления увеличивается с повышением рабочей температуры, тока и di/dt.
Ток обратного восстановления диода и коммутационные потери IGBT могут быть существенно снижены при замене кремниевых оппозитных PiN-диодов на SiC-диоды с барьером Шоттки (SBD). Из-за особенностей кремния изготовить Si-диоды Шоттки с рабочим напряжением выше 200 В невозможно.
SiC-диоды Шоттки
SiC SBD выпускаются с номинальным напряжением 600 и 1200 В, 600-В диоды выпускаются с током 1, 4, 6, 10 и 20 А, 1200-В имеют номинальный ток 5 и 10 А. Основным преимуществом высоковольтных SiC SBD являются отличные динамические характеристики. Они имеют крайне низкий заряд обратного восстановления Qrr, который обусловлен барьерной емкостью, а не накоплением заряда. Кроме того, в отличие от Si-PiN-диодов, этот заряд не зависит от di/dt, прямого тока и температуры. Максимальная температура кристалла +175 °C у SiC SBD является фактической рабочей температурой. Сверхнизкая величина Qrr диодов SiC SBD позволяет уменьшить уровень коммутационных потерь в типовых схемах на основе IGBT, работающих в режиме жесткого переключения. В результате снижается температура корпуса IGBT, повышается эффективность системы, что даже дает возможность использовать менее мощный IGBT. Для оценки преимуществ этих высокопроизводительных диодов была использована тестовая схема с индуктивной нагрузкой, позволяющая измерить динамические потери IGBT и диодов. Это позволило провести сравнение потерь переключения сверхбыстрого кремниевого Si-диода с плавным восстановлением и SiC Cree Zero Recovery SBD и оценить влияние процесса их восстановления на потери переключения IGBT.
Измерительное оборудование
На рис. 1 показана схема, предназначенная для измерения характеристик переключения. В процессе работы на затвор IGBT подается двойной импульс. При тестировании 600-В прибора использовался резистор затвора 10 Ом для задания скорости коммутации 750 А/мкс. Для IGBT 12-го класса использовался резистор 22 Ом, при этом di/dt = 250 А/мкс.
В момент времени T1 IGBT включается, и ток через индуктор увеличивается до тех пор, пока не достигнет требуемого значения в момент T2. При этом IGBT выключается, и ток индуктивности перекоммутируется в диод. Потери включения IGBT и потери включения диодов измеряются в переходном процессе T2.
В момент T2 IGBT выключается, и ток индуктора переходит на оппозитный диод. Потери выключения IGBT и потери включения диодов измеряются в переходном процессе T2. Ток индуктора продолжает течь через диод до тех пор, пока IGBT не будет включен во время T3. Теперь ток индуктора передается из диода обратно в IGBT. Потери включения IGBT и потери выключения диода измеряются в переходном процессе T3.
Сравнение характеристик переключения
Параметры коммутации измерялись для 15-А/600-В Ultrafast Si-диода с плавной характеристикой восстановления (такой же используется совместно с 40-А Ultrafast IGBT) и 10-А SiC SBD вместе с потерями 40-А/600-В Si-IGBT. Измерение потерь проводилось при напряжении 500 В и токе 20 A.
На рис. 2 показаны эпюры напряжения, тока и мгновенной мощности, измеренные при выключении Ultrafast Si-диода при температуре кристалла +150 °C. Пик тока обратного восстановления достигает 23 А, время восстановления — 100 нс, пиковая мгновенная мощность — 7 кВт. На рис. 2 видно перенапряжение 200 В, вызванное высокой скоростью изменения тока di/dt при обратном восстановлении.
На рис. 3 показаны эпюры выключения SiC SBD при +150 °C. Пик тока обратного восстановления здесь 4 А (снижение на 83%), время восстановления 33 нс (снижение на 67%), максимальная мгновенная мощность — 0,5 кВт (снижение на 93%). Резкое сокращение мощности переключения обусловлено тем, что SiC SBD должен рассеять лишь небольшой емкостной заряд, и это происходит при низком напряжении на диоде. Перенапряжение, формируемое при коммутации Si-диода, полностью отсутствует у SiC SBD.
На рис. 4 показаны эпюры напряжения, тока и мгновенной мощности при включении IGBT с Ultrafast Si-диодом, измеренные при температуре кристалла +150 °C. Во время включения транзистора ток обратного восстановления диода добавляется к току IGBT, что создает пик, достигающий 44 А. Пиковая мгновенная мощность 15 кВт рассеивается в IGBT. Кроме того, видны высокочастотные колебания на IGBT, возникающие при резком выключении кремниевого диода. Это является одной из основных причин генерации радиочастотных/электромагнитных помех.
На рис. 5 показаны эпюры напряжения, тока и мгновенной мощности при включении IGBT с SiC SBD, измеренные при температуре кристалла +150 °C. Использование SiC SBD позволяет снизить пик тока до 22 А (на 50%), а максимальную мгновенную мощность до 7,5 кВт (снижение на 50%). Также видно, что при этом отсутствуют высокочастотные осцилляции, что приводит к уменьшению генерации помех RFI/EMI.
Сравнение параметров переключения SiC SDB и Ultrafast Si-диодов приведено для температур кристалла +25 и +150 °C в таблице 1. Можно видеть, что общее снижение потерь переключения (IGBT + диод) составляет 52% при +25 °C и 56% при +150 °С.
Параметр |
Si Pin при +25/+150 °C |
SiC при +25/+150 °C |
% снижения при +25/+150 °C |
Пик тока восстановления Ipr, A |
13/23 |
4 |
69/83 |
Время обратного восстановления Trr, нс |
83/100 |
30/33 |
64/67 |
Заряд восстановления Qrr, нс |
560/1220 |
78/82 |
86/93 |
Потери выключения диода Eoff_d, мДж |
0,11/0,23 |
0,02 |
82/91 |
Потери включения диода Eon_d, мДж |
0,03 |
0,02 |
33 |
Потери общие диода Ets_d, мДж |
0,14/0,26 |
0,04 |
71/85 |
Потери выключения IGBT Eoff_IGBT, мДж |
0,63/0,94 |
0,23/0,24 |
63/74 |
Потери включения IGBT Eon_IGBT, мДж |
0,46/0,89 |
0,32/0,64 |
30/29 |
Потери общие IGBT Ets_IGBT, мДж |
1,09 |
0,55/0,64 |
50/28 |
Потери общие Ets, мДж |
1,23/2,09 |
0,59/92 |
52/56 |
На рис. 6 показаны токи выключения Si Ultrafast и SiC SBD при +25 и +150 °C, наложенные в одном масштабе. Параметры SiC SBD не зависят от температуры, пиковый ток восстановления — 5 А. Ток восстановления Ultrafast Si-диода заметно меняется с температурой, увеличиваясь с 13 А при +25 °C до 23 А при +150 °С.
На рис. 7 показаны кривые токов включения IGBT с Si Ultrafast и SiC SBD при температуре +25 и +150 °С, наложенные друг на друга. Пиковый ток IGBT с SiC SBD не зависит от температуры. Вариант с диодом Si Ultrafast показывает сильную температурную зависимость, связанную с высокой термозависимостью тока обратного восстановления.
На рис. 8 показаны суммарные динамические потери диода (включение и выключение) при частоте коммутации от 10 до 100 кГц и температуре +50, +100 и +150 °C. SBD имеет значительно меньшие потери (снижение до 85%), не меняющиеся с ростом температуры.
На рис. 9 показаны суммарные динамические потери IGBT (включение и выключение) при частоте коммутации от 10 до 100 кГц и температуре +50, +100 и +150 °C. Потери транзистора с SiC SBD примерно в два раза ниже, чем с Ultrafast Si-диодом. Этот вариант также демонстрирует гораздо меньшую зависимость от температуры. Температурная зависимость потерь переключения IGBT с SiC SBD обусловлена увеличением времени выключения транзистора, при этом потери включения не меняются с нагревом прибора. Такое заметное улучшение динамических свойств IGBT объясняется, в первую очередь, отсутствием процесса обратного восстановления SiC SBD.
Сравнение характеристик переключения 1200-В приборов
Параметры переключения измерялись для 8 А/1200 В Ultrafast Si-диода (такой же используется совместно с 11-А сверхбыстрым IGBT) и 5-А SBD, вместе с потерями 11 А/1200 В IGBT. Измерение потерь проводилось при напряжении 1000 В и токе 5 A. Максимальная температура кристалла при испытаниях составляла +125 °С, поскольку при температуре +150 °С начинается тепловое «убегание» IGBT.
На рис. 10 показаны эпюры напряжения, тока и мгновенной мощности при выключении Ultrafast Si-диода при температуре кристалла +125 °C. Пик тока обратного восстановления достигает 6 А, время восстановления — 148 нс, мгновенная пиковая мощность — 2,8 кВт. Перенапряжение на 600-В Si-диоде не является ярко выраженным, поскольку тестирование происходило при низком значении di/dt (250 вместо 750 А/мкс).
На рис. 11 показано выключение SiC SBD при температуре кристалла +125 °C.
Использование SiC SBD позволяет уменьшить пик тока до 1 А (снижение на 83%), время восстановления — до 30 нс (снижение на 80%), а максимальную мгновенную мощность — до 0,3 кВт (снижение на 89%). Такое значительное уменьшение пиковой мощности объясняется тем, что SBD рассеивает только емкостной заряд при низком напряжении.
На рис. 12 показаны эпюры напряжения, тока и мгновенной мощности при включении IGBT с Ultrafast Si-диодом при температуре кристалла +125 °C. В процессе включения ток обратного восстановления диода добавляется к току IGBT, что создает пик 11,7 А. Мгновенная мощность, рассеиваемая при этом транзистором, составляет 11 кВт.
На рис. 13 показаны эпюры напряжения, тока и мгновенной мощности при включении IGBT с SBD при температуре кристалла +125 °C. Использование SBD позволяет уменьшить пик тока до 6,7 А (снижение на 42%), а максимальную мгновенную мощность — до 6,2 кВт (снижение на 44%).
На рис. 14 показаны эпюры токов выключения Ultrafast Si-диода и SiC SBD при температуре +25 и +125 °C, наложенные друг на друга. Параметры SiC SBD неизменны с температурой, пиковый ток восстановления — 1 А. Диоды Si Ultrafast демонстрируют сильную температурную зависимость, ток увеличивается с 5 А при +25 °C до 6 А при +150 °С. Время обратного восстановления Si Ultrafast растет со 100 нс при +25 °C до 148 нс при +125 °С, в то время как параметр trr у SiC SBD при тех же условиях остается неизменным.
На рис. 15 показаны эпюры токов включения IGBT с Ultrafast Si-диодом и SiC SBD при температуре +25 и +125 °C, наложенные друг на друга. Пик тока IGBT с SiC SBD не зависит от температуры. Пиковый ток и время обратного восстановления IGBT с Ultrafast Si-диодом демонстрируют сильную температурную зависимость вследствие термозависимости процесса обратного восстановления.
В таблице 2 приведено сравнение параметров переключения SiC SBD и Ultrafast Si-диодов для температур кристалла +25 и +125 °C. Все измерения показывают значительное превосходство SiC SBD. Их параметры остаются неизменными с увеличением температуры, в то время как у Ultrafast Si-диодов потери растут. Общее снижение потерь переключения (IGBT + диод) составляет 51% при +25 °С и 58% при +125 °С.
Параметр |
Si Pin при +25/+150 °C |
SiC при +25/+150 °C |
% снижения при +25/+150 °C |
Пик тока восстановления Ipr, A |
5,5/6 |
1 |
82/83 |
Время обратного восстановления Trr, нс |
100/148 |
30 |
70/80 |
Заряд восстановления Qrr, нс |
295/540 |
20 |
93/95 |
Потери выключения диода Eoff_d, мДж |
0,08/0,16 |
0,02 |
75/88 |
Потери включения диода Eon_d, мДж |
0,03 |
0,02 |
33 |
Потери общие диода Ets_d, мДж |
0,11/0,19 |
0,04 |
64/79 |
Потери выключения IGBT Eoff_IGBT, мДж |
0,73/0,98 |
0,28 |
62/71 |
Потери включения IGBT Eon_IGBT, мДж |
0,33/0,57 |
0,25/0,41 |
24/28 |
Потери общие IGBT Ets_IGBT, мДж |
1,06/1,55 |
0,53/0,69 |
50/55 |
Потери общие Ets, мДж |
1,17/1,74 |
0,57/0,73 |
51/58 |
На рис. 16 показаны суммарные динамические потери диода (включение и выключение) при частоте коммутации от 10 до 100 кГц и температурах +25, +75 и +125 °C. SiC SBD имеет значительно меньшие потери переключения (снижение до 75%), которые не зависят от температуры.
На рис. 17 показаны суммарные динамические потери IGBT (включение и выключение) при частоте коммутации от 10 до 100 кГц и температурах +25, +75 и +125 °C. Потери транзистора с SiC SBD примерно в два раза ниже, чем с Si Ultrafast. У этого варианта также меньше температурная зависимость потерь. Ее наличие объясняется тем, что с ростом температуры растет время выключения, а потери включения остаются при этом неизменными. Такое заметное улучшение динамических свойств IGBT объясняется, в первую очередь, отсутствием процесса обратного восстановления SiC SBD.
Потери проводимости и общие потери
На рис. 18 показана прямая вольт-амперная характеристика 1200-В Ultrafast Si-диода и SiC SBD при температурах +25 и +125 °С. При токе 5 А прямое падение напряжения SiC SBD меньше на 0,75 В при 25 °С и на 0,18 В при +125 °С, таким образом, SiC-диод имеет меньшие потери проводимости.
В таблице 3 приведены расчеты суммарных потерь для преобразователя на модулях 12-го класса, работающего с частотой коммутации 100 кГц с коэффициентом заполнения 50% при среднем токе 2,5 А. Расчеты делались для температуры кристаллов +125 °С. Справочное значение потерь проводимости IGBT составляет 2,9 В при 5 А. При использовании SiC SBD общие потери диода уменьшаются на 50%, а потери IGBT — на 51%. Таким образом, простая замена Ultrafast Si-диодов на SiC SBD обеспечивает снижение потерь 1200-В конвертера на 51%.
Параметр |
Si Pin |
SiC |
% снижения |
Потери диода динамические, Вт |
19 |
4 |
79 |
Потери диода статические, Вт |
12,5 |
11,7 |
6 |
Потери общие диода, Вт |
31,5 |
15,7 |
50 |
Потери IGBT динамические, Вт |
155 |
69 |
55 |
Потери IGBT статические, Вт |
14,5 |
14,5 |
0 |
Потери общие IGBT, Вт |
169,5 |
83,5 |
51 |
Потери общие, Вт |
201 |
99,2 |
51 |
Заключение
Потери включения IGBT в значительной степени зависят от характеристик обратного восстановления оппозитного диода. Параметры SiC SBD оказывают большое влияние на динамические свойства как самого диода, так и IGBT в режиме жесткой коммутации. Представленные выше результаты измерений демонстрируют значительные преимущества SiC-диодов Шоттки. В то время как ток обратного восстановления Ultrafast Si-диодов демонстрирует сильную зависимость от температуры, параметры SiC SBD остаются неизменными. При высоких значениях di/dt Ultrafast Si-диоды генерируют перенапряжение при выключении, в отличие от них SiC SBD практически не генерируют перенапряжения благодаря отсутствию тока обратного восстановления. Резкое выключение Si Ultrafast создает паразитные осцилляции напряжения на IGBT, что, в свою очередь, приводит к генерации радиочастотных/электромагнитных помех. Этот эффект также отсутствует у SiC SBD.
Снижение потерь переключения на 50% можно использовать для оптимизации характеристик устройства несколькими различными способами. Например, это дает возможность увеличения эффективности преобразователя, снижения требований к системе охлаждении или использования IGBT с меньшим номинальным током. Также это позволяет увеличить рабочую частоту и, соответственно, уменьшить размеры пассивных компонентов или улучшить акустические характеристики. Отсутствие коммутационных перенапряжений устраняет необходимость в снабберных цепях. Отсутствие высокочастотных осцилляций уменьшает требования к фильтрам RFI/EMI. Замена Ultrafast Si-диодов на SiC-диоды Шоттки, такие как Cree Zero Recovery SBD, приводит к существенному снижению коммутационных потерь как в диоде, так и в IGBT, что дает значительное улучшение характеристик всей системы.
ASIASEMITECH — это марка SIC — диодов.
Если бы вы написали нвость про эту марку, а лучше статью, мы бы ее с удовольсвием опубликовали.