Школа MATLAB. Урок 10. Вторичный источник питания полупроводникового электропривода с рекуперацией энергии в сеть

№ 4’2009
PDF версия
Данная статья продолжает цикл публикаций по разработке методики модельного исследования вторичных источников питания (ВИП) силовых полупроводниковых преобразователей, включенных в замкнутую систему электропривода. В статье рассматривается электропривод, ВИП которого обеспечивает рекуперацию энергии в сеть переменного тока. Для моделирования используются блоки библиотек Simulink и SimPowerSystems (уроки 1-5) [5-9]. Представление результатов моделирования реализуется программными и инструментальными средствами MATLAB (урок 6) [2]. Основные характеристики устройств силовой электроники рассмотрены в уроке 7 [3].

Все статьи цикла

Введение

В предыдущей статье [4] показано, что в электроприводе постоянного тока с широтно-импульсным преобразователем (ШИП), выполняющим функцию силового регулятора, и выпрямителем с емкостным фильтром, выполняющим функцию вторичного источника питания (ВИП), энергетические процессы в ВИП зависят от структуры и параметров замкнутого электропривода.

В частности, в одноконтурном электроприводе, работающем в генераторном режиме, механическая энергия вала накапливается в конденсаторе фильтра либо рассеивается в специальной цепи сброса энергии. Аналогично ведут себя системы переменного тока с автономным инвертором напряжения (АИН) в качестве силового полупроводникового преобразователя.

В системах маломощных (приблизительно до 500 Вт) отмеченные особенности обычно не приводят к существенным ухудшениям энергетических характеристик. В системах большей мощности применение в ВИП выпрямителя, даже снабженного цепью сброса энергии, не обеспечивает генераторного режима работы как при переходных процессах, так и, тем более, в установившихся режимах работы. Универсальное решение для обеспечения всех режимов работы исполнительной машины в электроприводе и улучшения энергетических характеристик систем реализуется путем использования сетевого инвертора. Основное достоинство сетевого инвертора в системе электропривода — это его способность рекуперировать энергию в сеть переменного тока.

 

Расчетная схема подсистемы электропривода «сеть — вторичный источник питания — силовой полупроводниковый преобразователь — электрическая машина»

В значительном числе применений первичным источником питания в электроприводе является сеть переменного тока. В этом случае широтно-импульсные преобразователи и автономные инверторы (ШИП, АИН) запитываются от вторичных источников питания (ВИП). К этим ВИП, кроме обычных требований, предъявляются специфические требования, которые обусловлены необходимостью управлять запасенной (иногда генерируемой) механической системой кинетической или потенциальной энергией.

Полупроводниковые преобразователи со звеном постоянного тока (ШИП, АИН) с широтно-импульсными алгоритмами управления обладают способностью передавать энергию как от звена постоянного тока к исполнительной машине, так и от машины к звену постоянного тока, то есть такие преобразователи обладают двусторонней управляемой энергетической связью. Для реализации двусторонней энергетической связи между звеном постоянного тока и сетью используется, как это было отмечено выше, сетевой инвертор.

Расчетная схема подсистемы, включающая вторичный источник питания и силовой преобразователь с электрической машиной, представлена на рис. 1.

В этой схеме силовой преобразователь вместе с машиной приведен к звену постоянного тока и заменен пассивной R, L нагрузкой и управляемым источником ЭДС Е. Такая замена справедлива и для систем постоянного тока с ШИП, и для систем переменного тока с АИН. На выходе ВИП всегда включается конденсатор фильтра. Дифференциальное уравнение для определения тока нагрузки имеет вид:

Формула

Если электрическая машина, включенная на выходе преобразователя, работает в двигательном режиме, то напряжение Ud на конденсаторе фильтра превышает противо-ЭДС E(t) и ток в нагрузке положительный, а энергия направлена от сети к машине. Если электрическая машина, включенная на выходе преобразователя, работает в генераторном режиме, то противо-ЭДС E(t) превышает напряжение Ud на конденсаторе фильтра, ток в нагрузке отрицательный, а энергия направлена от машины к сети. Полупроводниковый преобразователь ВИП в этом случае должен создавать пути для протекания отрицательного тока нагрузки во избежание нарастания напряжения на конденсаторе выше допустимого. Динамика электропривода в уравнении (1) определяет поведение противо-ЭДС E(t). Однако для энергетических характеристик преобладают установившиеся процессы. Другими словами, если в установившихся режимах (двигательном или генераторном) ВИП обеспечивает передачу энергии между источником переменного тока и исполнительной электрической машиной, то и в переходных режимах работы электропривода двусторонняя передача энергии будет обеспечена, а напряжение на конденсаторе не изменится.

Преобразование координат

Описания электромагнитных процессов в трехфазных системах переменного тока значительно упрощаются при использовании метода результирующего вектора [3, 4].

Результирующий вектор напряжения питающей сети находится из уравнения:

Формула

Величины, входящие в уравнение, определяются из выражений:

Формула

Согласно уравнению (2), результирующий вектор напряжения сети вращается в комплексной плоскости с угловой скоростью ω1 = 2πf1.

Результирующий вектор напряжения сети может быть представлен в следующих декартовых системах координат:

  1. В неподвижных координатах, которые обозначаются через α и β, причем ось α совмещается с действительной осью комплексной плоскости, а ось β — с мнимой.
  2. Во вращающейся с синхронной скоростью ω1 = 2πf1 системе координаты — x, y (x — вещественная ось, y — мнимая ось).

Рассмотрим взаимное преобразование результирующего вектора в рассмотренных системах координат.

Математическая основа преобразования поясняется на рис. 2.

В неподвижной системе координат (а, в) вектор напряжения может быть представлен в алгебраической и показательной форме:

Формула

Аналогично в системе вращающихся координат ( x, y) тот же самый вектор может быть представлен в виде:

Формула

Отсюда легко получить уравнения перехода от неподвижной системы координат (α, β) к вращающейся (x, y) и наоборот:

Формула
Формула

Преобразование двухфазной неподвижной системы координат в трехфазную осуществляется в соответствии с выражениями:

Формула

Аналогичные преобразования осуществляются для трехфазного тока в источнике питания и первой гармоники ЭДС на выходе трехфазного инвертора.

При анализе и синтезе трехфазных систем переменного тока преобразование координат реализуется аппаратными и программными средствами в системе управления.

Рассмотрим электромагнитные и энергетические процессы в инверторе (рис. 1), подключенном к питающей сети в синхронно вращающейся системе координат x, y. Здесь инвертор с одной стороны подключен к сети с напряжением U1, с другой — к цепи с напряжением Ud. Принципиальным свойством этой схемы является постоянство величины напряжения сети U1.

Сам инвертор представлен преобразователем, который по отношению к сети переменного тока генерирует результирующий вектор ЭДС, первая гармоника этой ЭДС равна:

Формула

где μ1 — коэффициент модуляции, φ1мод — фаза напряжения модуляции по отношению к напряжению сети.

Уравнение, составленное по второму закону Кирхгоффа, для схемы (рис. 1) запишется в виде

Формула

где E01, U1, I1 — результирующие векторы ЭДС на выходе инвертора, напряжения и тока сети.

По отношению к сети переменного тока инвертор может работать и как генератор активной мощности (инвертор), и как потребитель активной мощности (активный выпрямитель). При этом активная мощность в сети определяется уравнением:

Формула

где x1 = 2πf1L1, L1 — индуктивность на входе инвертора, m1 — число фаз.

Из уравнения (11) следует, что при φ1мод ≥ 0 инвертор генерирует в сеть активную мощность. При φ1мод ≤ 0 инвертор потребляет из сети активную мощность. При φ1мод = 0 вся система работает в режиме холостого хода.

Реактивная мощность, потребляемая инвертором, определяется уравнением:

Формула

В зависимости от знака в скобках (12) инвертор может потреблять реактивную (индуктивную) или реактивную (емкостную) мощность.

Векторные диаграммы всех возможных режимов работы системы представлены на рис. 3. На векторных диаграммах в качестве базового вектора принят результирующий вектор напряжения сети U1 = 2/3( uA + auB + U²uC), направленный по оси y.

Рассмотрим векторные диаграммы, показанные на рис. 3.

Активная и реактивная мощность в системе определяются уравнениями:

Формула

Если I1Y 1Y > 0, то инвертор потребляет активную мощность из сети (активный выпрямитель).

В обоих режимах работы инвертор потребляет из сети реактивную (емкостную) мощность до тех пор, пока I1X 1X > 0 инвертор потребляет из сети реактивную (индуктивную) мощность.

Таким образом, для раздельного, независимого регулирования активной и реактивной мощности необходимо организовать векторное управление инвертором с отрицательной обратной связью по току в синхронно вращающейся системе координат (x, y), связанной с результирующим вектором напряжения сети, тогда проекция тока I1Y определит активную мощность сети, а проекция I1X— реактивную.

Модельное исследование напряжения на конденсаторе ВИП в замкнутом электроприводе

Основной задачей управления ВИП в замкнутом электроприводе является стабилизация напряжения на конденсаторе фильтра в звене постоянного тока. В качестве дополнительной задачи обычно выдвигается требование поддержания коэффициента мощности равным единице. Модель, которая позволяет исследовать энергетические характеристики сетевого инвертора при заданном стабилизированном напряжении в звене постоянного тока и раздельном управлении по проекциям тока в сети Ix и Iy, представлена на рис. 4.

Разработка модели ВИП в замкнутом электроприводе осуществлялась при использовании структурно-функциональных (пакет Simulink) и виртуальных (пакет расширения SimPowerSystems) моделей [10, 11]. Каждый блок пакетов Simulink и SimPowerSystems имеет окно настройки основных параметров. Библиотеки, названия, пиктограммы и параметры блоков представлены в таблице 1. В блоке x, y — ABC (рис. 4) осуществляется преобразование из вращающейся системы координат (x, y) в неподвижные А, В, С в соответствии с уравнениями (7, 8). В блок Hist_Control включены три релейных регулятора, реализующие «токовый коридор» в инверторе. Для того чтобы сетевой инвертор не потреблял реактивной мощности, ток по оси x (Ix) задается равным нулю.

Для стабилизации напряжения в звене постоянного тока сетевого инвертора контур регулирования тока по оси y строится как подчиненный контуру стабилизации напряжения, в котором используется ПИД-регулятор. В рассматриваемом модельном эксперименте ток нагрузки в течение времени моделирования изменяется за счет изменения противо-ЭДС.

Модель подсистемы, обозначенной как xy_ ABC, в которой осуществляется преобразование синхронно вращающейся системы координат x, y в неподвижную систему координат, и задающей токи в фазах A, B, C инвертора, показана на рис. 5. Она содержит библиотечные блоки, которые приведены в таблице 2. Подсистема Hit_Control представляет собой релейные регуляторы, модель этой подсистемы показана на рис. 6, а параметры помещены в таблицу 2.

Модель измерительной подсистемы Subsystem показана на рис. 7. В модели используются рассмотренные выше входные и выходные порты и два блока гармонического анализа из библиотеки SimPowerSystems Extras Measurement.

На рис. 8 представлены квазиустановившиеся процессы в системе, когда ток на выходе ВИП изменяется по трапецеидальному закону. В этом случае на временном интервале, где ток нагрузки постоянен, имеет место установившийся режим работы системы (двигательный при положительном токе, генераторный — при отрицательном). На временном интервале, где ток меняется по линейному закону, имеет место переходный режим работы системы. Таким образом, при трапецеидальном токе в нагрузке ВИП можно исследовать как переходные, так и установившиеся режимы работы системы. Результаты моделирования показывают, что напряжение на конденсаторе при рассмотренных квазиустановившихся режимах работы системы изменяется незначительно.

Электромагнитные характеристики в установившемся режиме работы системы показаны на рис. 9. Для получения электромагнитных характеристик во всем диапазоне изменения тока нагрузки ВИП в модели в блоке Repeating Sequence формируется линейно изменяющийся сигнал. При этом скорость изменения этого сигнала подбирается такой, чтобы составляющей L(diH/dt) по сравнению с RiH в уравнении (1) можно было пренебречь, чем и достигается установившийся режим работы ВИП при различном токе нагрузки. Для построения основных характеристик представленных на рис. 9 служит программа, помещенная в листинге 1.

При этом отрицательный ток соответствует генераторному режиму работы системы, а положительный ток — двигательному.

Характеристики (рис. 9), полученные на модели, показывают, что ток I1 в сети увеличивается при росте тока нагрузки ВИП0 как в двигательном, так и в генераторном режиме работы системы электропривода. Потребление энергии из сети или рекуперация энергии в сеть определяется фазой тока относительно напряжения. В генераторном режиме фаза тока относительно напряжения равна 180°, а в двигательном — 0°.

Внешняя характеристика ВИП, представляющая собой зависимость напряжения на его выходе от тока на выходе, достаточно жесткая при изменении тока в нагрузке (рис. 9).

Программа для построения энергетических характеристик представлена в листинге 2.

Энергетические характеристики системы, полученные на модели, представлены на рис. 10.

Положительная активная мощность на входе и выходе ВИП соответствует режиму передачи энергии из сети в нагрузку (режим выпрямителя), отрицательная — режиму рекуперации энергии в сеть. Потери мощности в инверторе определяются значением Р2 при Р1 = 0. Ток в питающей сети и его спектр в режиме активного выпрямителя показаны на рис. 11.

Литература
  1. Ануфриев И., Смирнов А., Смирнова Е. MATLAB 7. Наиболее полное руководство. СПб.: БХВ-Петербург, 2005.
  2. Герман-Галкин С. Г. Школа MATLAB. Урок 6. Программные и инструментальные средства представления результатов моделирования // Силовая электроника. 2007. № 4.
  3. Герман-Галкин С. Г. Школа MATLAB. Урок 7. Модельное исследование основных характеристик силовых полупроводниковых преобразователей // Силовая электроника. 2008. № 1.
  4. Герман-Галкин С. Г. Школа MATLAB. Урок 9. Вторичные источники питания в полупроводниковом электроприводе // Силовая электроника. 2008. № 4.
  5. Худяков В. Моделирование устройств силовой электроники. Урок 1. Основные инструменты Simulink // Силовая электроника. 2005. № 1.
  6. Худяков В. Школа MATLAB. Урок 2. Библиотека SimPowerSystem // Силовая электроника. 2005. № 2.
  7. Худяков В. Школа MATLAB. Урок 3. Построение SPS-моделей с полупроводниковыми элементами // Силовая электроника. 2005. № 3.
  8. Худяков В. Школа MATLAB. Урок 4. Анализ динамических свойств устройств силовой электроники во временной области // Силовая электроника. 2005. № 4.
  9. Худяков В. Школа MATLAB. Моделирование устройств силовой электроники. Урок 5. Анализ устройств силовой электроники в частотной области // Силовая электроника. 2006. № 1.
  10. Черных И. В. Simulink: среда создания инженерных приложений. М.: Диалог-МИФИ, 2004.
  11. Черных И. В. Моделирование электротехнических устройств в MATLAB, SimPowerSystems и Simulink. СПб.: Питер, 2008.

Добавить комментарий

Ваш адрес email не будет опубликован.

hentao pornnporn.com telugu chatting west indies open sex youpornhindi.com first night xxnx maja mallika tamil dirty story xxxfiretube.com teen xxnx xxxxu indianpornsearch.com pooja kumar sex 喉奥性感イラマ痴女 浜崎真緒 javsextube.com 君嶋真由 i love porn sexxxymovs.com mallusexvideos tomcat doujinshi bluhentai.com tiny boobs giant tits history sequel black dog hentai mobhentai.com hentai onee chan jammu blue film indiananalfuck.com indian incest xvideos mugen fc2 javwhores.mobi 巨乳 あげ افلام نيك مترجم cyberpornvideos.com طيذ momteachessex indianxxxonline.com house wife x videos 君嶋真由 freejavonline.mobi クローゼット 寝取られ sexx tamil indianfuckass.com bengali milf mia khalifa hard fuck pelisporno.org newsexstory