На какую электрическую сеть мы можем рассчитывать. Проблема качества электроэнергии
Наталья Воронцова
Николай Воронцов
Электрические приборы становятся многофункциональнее, точнее, чувствительнее. Чувствительнее они становятся не только к входным сигналам, но и к качеству питающей сети. А усложнение аппаратуры и увеличение ее количества ухудшает качество сети.
Самым неприхотливым прибором, наверное, является нагреватель (электроплитка). Он может работать и при пониженном напряжении (отдавая меньше мощности), при бросках, провалах и любых помехах. Хотя и он при длительном повышенном напряжении выйдет из строя.
Холодильник — капризнее. Он может сгореть и при пониженном напряжении (если мотору не хватит напряжения, чтобы запуститься).
Радиоприемнику и телевизору может «не понравиться» не только повышенное или пониженное напряжение сети, но и наличие в ней помех. Эти устройства могут их показывать, воспроизводя помехи поверх полезного изображения и звука.
А устройства, имеющие сложные блоки управления, при наличии в сети помех могут сбиваться или вообще откажутся работать.
Поэтому стандартом определены требования, предъявляемые к качеству электроэнергии: ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения». И вся аппаратура должна быть приспособлена к этим параметрам.
Отклонение напряжения
По ГОСТ 21128-83 отклонение напряжения характеризуется показателем, для которого установлено следующее: нормально допустимые и предельно допустимые значения установившегося отклонения напряжения ?Up на выводах приемников электрической энергии равны соответственно ±5% и ±10% от номинального напряжения электрической сети.
Ни один из потребителей электроэнергии такого отклонения не заметит, за исключением трехфазных сетей, где автоматика может отслеживать разбаланс по фазам.
При поставке электроэнергии этот параметр качества очень часто (чаще всех других) не соответствует ни нормально допустимым, ни предельно допустимым значениям. Привести в норму этот параметр может любой стабилизатор (в пределах, отраженных в его характеристиках), если сопротивление подводящей линии достаточно мало. Но, естественно, ни один стабилизатор не поднимет напряжение с 0 В.
В паспорте на стабилизатор указывают:
- рабочий диапазон входных напряжений, в котором они поддерживают выходное напряжение с заданной точностью;
- предельный диапазон входных напряжений, при выходе из которого стабилизатор отключает нагрузку (или отключается полностью), так как стабилизация напряжения уже не производится.
Колебания напряжения
Колебания напряжения более опасны, чем отклонение напряжения, так как проявляются в виде таких же отклонений напряжения, но повторяющихся — через промежутки времени от 60 мс до 10 мин.
Виновником этих отклонений может быть не поставщик электроэнергии, а другие потребители, подключенные к этой линии, или плохое качество самой линии. Можно отметить, что с отклонениями, проявляющимися с большими промежутками времени (более 40–80 мс), стабилизатор справляется успешно. Период переменного напряжения в сети равен 20 мс. Поэтому стабилизатору нужно, по крайней мере, 20 мс, чтобы измерить напряжение, и какое-то время, чтобы его скорректировать.
Колебания напряжения характеризуются следующими показателями:
- размахом изменения напряжения;
- дозой фликера.
По ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» допускается размах изменения напряжения не более 10% от номинального, если число этих колебаний не более одного за 10 мин. Эта величина снижается до 0,4%, если частота возрастает до 1000 колебаний в минуту. А для потребителей электрической энергии, располагающих лампами накаливания, в помещениях, где требуется значительное зрительное напряжение, этот показатель уменьшается еще в 1,5 раза. Выполнить такие требования обычному стабилизатору не под силу. Из этого положения есть два выхода. Во-первых, поставить стабилизатор с двойным преобразованием и получить такое качество электроэнергии, какое необходимо.
Есть и более дешевый вариант: использовать «энергосберегающие» лампы, если надо устранить явление фликера. У этих ламп есть встроенный преобразователь. Поэтому мерцание значительно снижается ( но при больших колебаниях мерцание полностью не устраняется).
Такие колебания напряжения не нарушат нормальный режим работы бытовой и промышленной аппаратуры. Но человек, находящийся в помещении, освещаемом лампами, питающимися от такой сети, может чувствовать себя некомфортно. В связи с этим в ГОСТ 13109-97 введен термин для оценки субъективного восприятия человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники, — «фликер».
Колебания напряжения на источнике света приводят к изменению его яркости, что воспринимается как мерцание. Длительное мерцание света вызывает утомляемость.
Поэтому в ГОСТе 13109-97 введены еще два показателя качества электроэнергии:
- Доза фликера — мера восприимчивости человека к воздействию фликера за установленный промежуток времени.
- Время восприятия фликера — минимальное время для субъективного восприятия человеком фликера, вызванного колебаниями напряжения определенной формы.
Отклонение частоты
Нормально допустимое и предельно допустимое значения отклонения частоты равны ±0,2 и ±0,4 Гц соответственно (ГОСТ 13109-97).
Отклонение частоты (мы не рассматриваем локальное производство электроэнергии от дизель-электрических агрегатов, а только от единой энергетической системы России) поддерживается точнее предельных значений. Это самый стабильный параметр. Если же его надо исправить, то в этом помогут только устройства с двойным преобразованием. Они могут питаться очень «плохой» сетью, как правило, выпрямляют ее и затем генерируют выходное напряжение нужной частоты (и формы).
Провал напряжения
Провал напряжения определен ГОСТом 13109-97 как внезапное понижение напряжения в точке электрической сети ниже 0,9Uном, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от 10 до нескольких десятков миллисекунд.
Предельно допустимое значение длительности провала напряжения в электрических сетях напряжением до 20 кВ включительно равно 30 с (рис. 1).
Временное перенапряжение
Временное перенапряжение — повышение напряжения в точке электрической сети выше 1,1Uном продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.
Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений не превышают значений, указанных в таблице 1.
В среднем за год в точке присоединения возможно около 30 временных перенапряжений.
При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухо заземленной нейтралью, возникают временные перенапряжения между фазой и «землей». Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений междуфазного напряжения. А длительность — нескольких часов (рис. 1).
Провал напряжения и временное перенапряжение — это два противоположных отклонения. Провал напряжения и временное перенапряжение — явления кратковременные и поставщику электроэнергии не подконтрольные, так как возникают при включении и выключении нагрузок, находящихся на этой же линии (фазе).
Такие отклонения стабилизатор может исправить. Провал напряжения встречается чаще и в большей или меньшей степени возникает при любом включении электродвигателя и даже ламп накаливания.
Импульс напряжения
При номинальном напряжении в сети 0,38 кВ коммутационное импульсное напряжение может составлять 4,5 кВ при длительности на уровне 0,5 амплитуды импульса, равной 1,5 мс. Значение грозовых импульсных напряжений может составлять 6 кВ. Возможная форма импульсного напряжения показана на рис. 2 (вторая половина диаграммы).
Импульсные напряжения в электрической сети бывают двух видов, различающихся по происхождению, — коммутационное и грозовое. Коммутационное импульсное напряжение возникает при включении большой нагрузки, выключении ее, при переключении нагрузки с одного источника на другой и особенно при сварке. Грозовое импульсное напряжение возникает в сети при ударах молнии вблизи электрической линии. Избавить от импульсного напряжения стабилизатор не в силах. Защитить нагрузку он может только частично с помощью варисторов, которые могут поглотить короткий импульс. От больших импульсов напряжения (и в том числе грозовых) может спасти только разрядник. В стабилизаторах разрядники, как правило, не ставят, а размещают на входе сети, чтобы защитить все приборы, подключенные после разрядника.
Для защиты стабилизатора и аппаратуры, включенной после стабилизатора, как правило, используют фильтр для защиты от синфазных помех. Источник импульсного напряжения наводит в линии импульс синфазного напряжения, так как расположен, как правило, вне линии, а не между проводами линии.
Несинусоидальность напряжения
Этот параметр характеризуется:
- коэффициентом искажения синусоидальности кривой напряжения;
- коэффициентом n-ой гармонической составляющей.
Первая величина имеет нормально допустимое значение — 8,0% и предельно допустимое — 12,0%.
Вторая величина имеет нормально допустимое значение — 6,6%. Предельно допустимое значение в 1,5 раза больше. С увеличением номера гармоники коэффициент n-ой гармонической составляющей уменьшается.
Источники света, как правило, могут работать и при сильных искажениях синусоидального напряжения. Но есть приборы, которые могут неправильно работать при искаженной форме синуса. Это в первую очередь приборы, которые измеряют напряжение сети.
Многие устройства измеряют значение напряжения для привязки своих настроек, и искажения синусоиды приведут к неправильной их работе. Пример несинусоидальности показан на рис. 2 (первая половина диаграммы).
Если при рассмотрении предыдущих параметров нас не интересовала форма напряжения в сети, то теперь рассмотрим ее влияниена работу аппаратуры.
Если синус без искажений, значит, в нем присутствует только первая гармоника. Чем больше искажен синус, тем больше в нем гармоник. Коэффициент гармоник отражает искажение синуса.
Говоря о напряжении в сети, равном 220 В, мы имеем в виду, что энергия, заключенная под синусоидой, совершит такую же работу, как и постоянное напряжение 220 В. При этом амплитудное значение синусоидального напряжения составит 310 В.
Электрические сигналы напряжения характеризуются мгновенным, средним, средневыпрямленным, среднеквадратическим и пиковым (для периодических сигналов — амплитудным) значениями.
Мгновенные значения наблюдают на осциллографе и определяют для каждого момента времени по осциллограмме. Все остальные значения могут быть измерены соответствующим вольтметром или вычислены по следующим формулам.
Среднее значение напряжения является среднеарифметическим за период:
Для симметричных относительно оси времени напряжений U0 равно нулю, поэтому для характеристики таких сигналов пользуются средневыпрямленным значением — средним значением модуля напряжения:
Среднеквадратическое значение напряжения за время измерения (чаще за период) вычисляется по формуле:
Закону изменения напряжения соответствуют определенные количественные соотношения между амплитудным, среднеквадратическим и средним значениями напряжений. Эти отношения оцениваются коэффициентами амплитуды:
Так, для синусоидального напряжения:
- среднее значение напряжения равно Uср.в. = 0,637Um;
- среднеквадратическое значение напряжения равно Uср.кв = 0,707Um.
В зависимости от системы применяемого прибора, типа и режима измерительного преобразователя и градуировки шкалы прибора его показания могут соответствовать среднему, среднеквадратическому или амплитудному значению измеряемого напряжения.
При измерении искаженного синуса появится ошибка.
На рис. 3а показано нормальное напряжение сети 220 В действующего значения (310 В — его амплитудное значение). Если произойдет ограничение синусоиды (как показано на рис. 1в), то действующее значение составит 209 В, а амплитудное — 280 В. Измеритель амплитудных значений измерит искаженный синус «В», так же как амплитудное значение «С».
То есть оно уменьшится соответственно формуле:
Этот измеритель, отградуированный в действующих значениях, ошибется на 5%. Градуировку большинства шкал вольтметров производят в среднеквадратических значениях синусоидального напряжения.
Поэтому при отличии формы напряжения от синуса измерение напряжения происходит с ошибкой. В этот процесс вмешивается и еще один фактор. Чем больше напряжение отличается от синуса, тем больше оно содержит гармоник (высокочастотных составляющих). А почти у всех измерителей точность измерения снижается с увеличением частоты.
Искажать синус могут также различные потребители электроэнергии. Больше всего это проявляется при проведении сварки. Затем идут тиристорные устройства, работающие с отсечкой. Например, электрический радиатор для обогрева помещения. Чтобы уменьшить его нагрев, тиристоры подают напряжение на нагреватель не весь полупериод, а часть полупериода. При этом на нагревателе выделяется не вся мощность, а ее часть. И так каждый полупериод: часть синуса с уменьшенной нагрузкой, часть — с увеличенной.
Даже импульсный источник питания компьютера потребляет ток неравномерно: часть полупериода меньше, часть — больше. Мощность компьютера мала, поэтому его работа на домашних приборах не сказывается. Но в компьютерных залах вольтметры разных систем покажут в сети разное напряжение (при неискаженной сети они показывают одинаковые напряжения).
В одной компании только что приобретенные стабилизаторы установили в зале с компьютерами, а на следующий день предъявили претензию, что стабилизаторы ошибаются. Выяснилось, что вольтметры, какими они пользовались, как раз измеряли амплитудное напряжение, а проградуированы были в среднеквадратичном.
С чем сталкивается потребитель электроэнергии
Источником электроэнергии для потребителей является трансформаторная подстанция, которая выдает 3-фазное напряжение 380 В (или 220 В относительно нейтрали). И если проверить качество электроэнергии на выходе подстанции, то оно будет соответствовать ГОСТу 13109-97. С удалением от подстанции качество электроэнергии будет ухудшаться. В ухудшение качества будет вносить вклад закон Ома. Как это происходит?
Рассмотрим вариант электропитания нескольких потребителей. Предположим, что от подстанции протянута линия (медным проводом или кабелем сечением 25 мм²) вдоль улицы из 10 домов (рис. 4).
Пусть расстояние между домами Ll = 20 м. Подвод электроэнергии осуществляется по двум проводам. По закону Ома, сопротивление этих проводов равно:
Если каждый потребитель включит только один электрочайник (3 кВт), ток потребления которого 13,5 А, то ток в проводах между потребителями составит величину, показанную во втором столбце таблицы 2. А ток от трансформатора будет 135 А. В первом столбце таблицы 2 отображен номер потребителя. В третьем столбце таблицы показано падение напряжения на одинаковых сопротивлениях линий между потребителями при увеличивающихся токах. В четвертом столбце приведено значение падения напряжения на линии от трансформатора до каждого из потребителей.
В случае, показанном на рис. 4, у потребителя № 1 (самого дальнего от трансформаторной подстанции, ТП) будет 220 В, если у всех выключена нагрузка, то на линии никакого падения напряжения не будет. Если все включат по одному электрочайнику (20,2 В упадет на линии), то у потребителя № 1 будет на входе 200 В. Три киловатта по сегодняшним меркам — небольшая величина.
Сейчас воздушные линии имеют большее сечение, что уменьшает сопротивление проводов и падение напряжения на них, но провода используются не медные, а алюминиевые или даже стальные (что увеличивает сопротивление проводов и падение напряжения на них). Поэтому приведенный пример очень близок к реальности.
Раньше в каждой квартире или доме после счетчика стояли четыре пробки по шесть ампер (две линии по шесть ампер). На одного потребителя приходилось 12 А.
Сейчас потребление тока сильно возросло. Один электрический чайник потребляет порядка 3 кВА (13,5 А). В некоторых коттеджах потребление тока составляет 70–90 А (до 20 кВА). В этих случаях и отклонение напряжения, и колебания напряжения выйдут за пределы, регламентируемые ГОСТом 13109-97. Если потребитель находится недалеко от трансформаторной подстанции, то положение можно полностью исправить с помощью стабилизатора напряжения. В противном случае положение можно частично исправить с помощью стабилизатора напряжения. Частично — это значит, что нагрузка должна будет иметь некоторый предел, который зависит от сопротивления подводящей линии. При превышении этого предела падение напряжения на линии начнет превышать то напряжение, на которое стабилизатор его повысит. Следующий пример иллюстрирует это.
В практике авторов был такой случай. Владелец магазина приобрел однофазный стабилизатор на 21 кВА. Он имеет минимальное входное напряжение 150 В и при этом может поднять напряжение на 32 В. От трансформаторной подстанции был протянут кабель. Его сопротивление оказалось 1,4 Ом. Нагрузка представляла собой несколько промышленных холодильников. При включении нагрузки напряжение на входе составило 164 В (при токе 40 А).
Падение напряжения на кабеле составило:
ΔU = 220 – 164 = 56 B.
Стабилизатор повысил напряжение на 32 В или в 0,195 раза: (164 В + 32 В) / 164 В = 0,195.
Мощность на нагрузке увеличится по квадратичному закону: 1,1952 = 1,4³, так как P = U²/R. Во столько же раз возрастет ток в подводящей линии, и во столько же раз увеличится падение напряжения на ней.
Ток в подводящей линии: 40 А × 1,43 = 57,2 А.
Падение напряжения на подводящей линии: 57,2 А × 1,4 Ом = 80 В.
Напряжение на входе стабилизатора упадет до 220 – 80 = 140 В.
Стабилизатор отключался по нижнему пределу входного напряжения. Когда нагрузка отключалась, напряжение на входе стабилизатора повышалось. Стабилизатор обнаружил, что напряжение находится в рабочем диапазоне, и включил нагрузку. Далее процесс повторялся. В данном случае стабилизатор не справился с корректировкой напряжения.
Казалось бы, если поставить дополнительно трансформатор и повысить напряжение на 13 В, то напряжение окажется в диапазоне работы стабилизатора и проблема будет решена. Но если мы будем повышать напряжение, то по квадратичному закону будет увеличиваться входной ток и во столько же увеличится падение напряжения на кабеле. И достигнуть необходимого результата не удастся.
То есть попытка стабилизатора увеличить напряжение приведет к его уменьшению. Для каждой подводящей линии свой порог, и зависит он от сопротивления этой линии.
Поэтому выход один: надо подключаться к трем фазам. Даже если протянуть каждую фазу отдельно (со своей нейтралью) и распределить нагрузку равномерно, выигрыш будет в три раза.
Ток в подводящей линии: 40 А / 3 = 13,3 А.
Падение напряжения на подводящей линии: 13,3 А × 1,4 Ом = 18,6 В.
Напряжение на входе стабилизатора упадет до 220 – 18,6 = 201,4 В.
Если подключиться с помощью обычного четырехжильного кабеля, то, при правильно распределенной нагрузке, ток по нейтрали течь не будет, и его сопротивление можно не учитывать. Значит — падение напряжения уменьшится еще в 2 раза.
Ток в подводящей линии: 13,3 А / 2 = 6,7 А.
Падение напряжения на подводящей линии: 6,7 А × 1,4 Ом = 9,4 В.
Напряжение на входе стабилизатора упадет до 220 – 9,4 = 210,6 В.
В этом случае может не понадобиться стабилизатор напряжения.
Если руководство электрических сетей примет решение установить для потребителя отдельный трансформатор, то на его выходе можно обеспечить качество электроэнергии, оговоренное в ГОСТе 13109-97.
Такое бывает. Авторы видели высоковольтную линию, подходящую к деревне из 15 домов. На конце этой линии стоят 2 трансформатора. От одного питается деревня, от другого — только один коттедж. Только в таком случае нагрузки, включаемые соседями, не ухудшают качество электроэнергии, и это качество можно требовать с поставщика электроэнергии.
Литература
- ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».
- ГОСТ 21128-83 «Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения до 1000 В».