Краткая история электричества,
или Почему в интеллектуальных домах используется постоянный ток

№ 2’2014
PDF версия
В современных интеллектуальных домах многие электрические «помощники» незаметно работают, чтобы сделать нашу жизнь еще более комфортабельной. Они подают сигналы, управляют освещением, регулируют системы отопления и кондиционирования, открывают двери гаража и распахивают шторы, чтобы впустить солнечный свет в комнату. Практически каждый электроприбор или система в доме могут управляться с помощью смартфона или планшета. И это только начало. В то время как в наших домах все еще используется переменный ток(по историческим причинам), вся электроника внутри дома работает от постоянного тока. И то же самое в скором времени произойдет со всеми нашими системами освещения. Небольшой экскурс в историю электричества объяснит, почему переменный ток стал использоваться традиционно.

Все началось на Международной выставке электричества в 1881 г. в Париже, где Томас Альва Эдисон пригласил весь мир подивиться новому изобретению — электрическому свету от световых ламп накаливания. В то время обычно использовались электросети постоянного тока. Чтобы сделать свой продукт успешным, Эдисон принял невероятный вызов электрифицировать самые большие города того времени, в частности Нью-Йорк, Лондон и Париж. Эдисон работал с током силой 110 В DC. Благодаря большим потерям в цепи постоянного тока электричество могло тем не менее передаваться только на относительно короткие расстояния. Это означало, что электростанции должны были быть построены прямо в центре города, так как каждая могла обеспечивать электричеством только дома в радиусе максимум 1,5 км. Хотя это трудно себе представить сегодня, но такие электростанции были действительно построены во всех центрах крупнейших городов.

Тем не менее скоро стало очевидно, что сети постоянного тока не могли эксплуатироваться в пределах разумных затрат на меньших площадях. Тогда Джордж Вестингаус предложил использовать переменный ток, который имел два главных преимущества: он относительно легко мог быть трансформирован в более высокое напряжение и для его передачи могли использоваться более длинные и тонкие провода. Два изобретателя стали соперниками в войне токов в начале 1890-х. В конце концов Вестингаус одержал победу, в чем ему немало посодействовал Никола Тесла, изобретатель многофазного индукционного двигателя переменного тока. Вот поэтому в наших домах все еще используются цепи постоянного тока, в то время как миллионы генераторов по всему миру снабжают нашу бытовую технику постоянным током.

 

Возрождение постоянного тока

Сможет ли самообслуживаемый интеллектуальный дом будущего открыть новую эру постоянного тока? И станут ли снова цепи постоянного тока интересным решением? Этот вопрос не настолько надуман, как может показаться.

Давайте посмотрим на Солнце. Это светило предоставляет нам энергию почти ежедневно и практически бесплатно. Поэтому фотогальванические электростанции стали одним из самых распространенных решений для домовладельцев, которые хотят быть менее зависимыми от городских электросетей. Практически все наши дома оснащены проводкой для переменного тока. Это означает, что электричество, генерируемое фотогальваническими панелями, не может быть использовано, если его не трансформировать в электроэнергию 230 В AC/50 Гц. В то время как современные преобразователи переменного тока имеют КПД ≥95%, некоторое количество энергии все же теряется.

Энергия, получаемая от солнечных лучей, не всегда доступна, когда это необходимо, например в вечернее время. Поэтому энергиию от большинства солнечных электростанций необходимо накапливать в соответствующих хранилищах. В недавнем прошлом это было очень выгодное решение, так как тарифы на поставку электроэнергии в сеть были искусственно завышены. Во время текущего кризиса помощь в виде грантов для возобновляемой энергии в Европе была постепенно сокращена, и поставки электроэнергии в сеть уже не являются таким привлекательным решением, как несколько лет назад. Поскольку владельцам солнечных электростанций было «отказано» в поставке электроэнергии по льготным тарифам, они стали рассматривать возможность переоборудования своих домов, чтобы можно было использовать постоянный ток в собственных целях. Любая «лишняя» энергия может храниться в буферной батарее, которая обеспечивает дома током в то время, когда отсутствует солнечный свет.

На рис. 1 показана установка постоянного тока в доме, которая может в скором будущем стать стандартной в интеллектуальных домах. С помощью внутренней разводки постоянного тока электроэнергией снабжаются почти все бытовые приборы, система освещения и элементы управления интеллектуального дома. Такие сети оптимально подходят для электроэнергии 24 В DC, так как это самое эффективное напряжение, учитывая длину кабеля и профилей. Если для перезарядки батареи будет недостаточно солнечного света, можно воспользоваться электроэнергией от городской сети. Поэтому в интеллектуальных домах не используется подключение 230 В AC.

Внутридомовая система разводки для постоянного тока

Рис. 1. Внутридомовая система разводки для постоянного тока, производимого встроенной солнечной электростанцией (обозначена синим цветом), буферная батарея и электродвигатель. Сеть постоянного тока (показана красным цветом) снабжается электроэнергией от блоков сетевого питания, потребляет много энергии и служит запасным зарядным устройством для батареи

Некоторые мощные бытовые приборы, например стиральные машины, холодильники, электропечи, лучше всего подключить к переменному току от сети. Это также касается бойлерных для горячей воды и нагревательных насосов. В то же время система контроля отопления может питаться от сети постоянного тока.

 

Работа от сети постоянного тока

Почему многие решают установить сеть постоянного тока? Разве не очевидно, что для большей части приборов в наших домах используется переменный ток от сети? Это не совсем так. Поскольку электронные компоненты основаны на технологии полупроводников, они работают от постоянного тока. Другими словами, ток 230 В AC из розетки сначала трансформируется в 24, 12 или 5 В DC, а затем подается в электронику. Стереосистемы, компьютеры и другое оборудование поставляются с адаптерами, которые обеспечивают необходимый им постоянный ток. Когда прибор включен в сеть, потери на преобразование незначительны. Но поскольку большая часть приборов в наших домах и офисах находится в режиме ожидания, суммарное потребление ими электроэнергии составляет уже значительную величину и тратится попусту.

Согласно Директиве Европейского Союза о ЭПП (энергопотребляющие продукты), с начала 2013 г. электронные приборы в режиме ожидания не должны потреблять более 500 мВт (для дисплеев 1 Вт). Чтобы соответствовать требованиям этой директивы, в генератор должен быть встроен небольшой модуль переменного/постоянного тока и реле, как показано на рис. 2. Это единственный способ уменьшить потребление электроэнергии в режиме ожидания до 500 мВт максимум.

Резервная электроцепь с модулем постоянного/переменного тока малой мощности

Рис. 2. Резервная электроцепь с модулем постоянного/переменного тока малой мощности для минимального резервного потребления (например, RAC03, 80 мВт). Основной генератор подключен к цепи с помощью реле

Самые большие потребители электроэнергии гораздо менее заметны. Обратите внимание на многочисленные зарядные устройства, которых предостаточно в домах. На рис. 3 показано, как они устроены. К примеру, линейный регулятор серии LM78 уменьшает энергоэффективность на 60–65%. Установив импульсный регулятор (например, серии R-78), можно значительно улучшить эффективность (до ≥95%).

Зарядное устройство с энергозатратным линейным регулятором

Рис. 3. Зарядное устройство с энергозатратным линейным регулятором

С внедрением светодиодной технологии бытовое освещение также перешло на постоянный ток. Для подключения светодиодных светильников используются светодиодные драйверы постоянного/переменного тока. Для систем домашнего освещения обычно используются светодиодные лампы 15–30 Вт (они дают освещенность, сравнимую с лампой накаливания 100 Вт). КПД светодиодных драйверов постоянного/переменного тока в этом диапазоне мощности редко превышает 80%.

Плоский диск RECOM

Рис. 4. Плоский диск RECOM, легко устанавливаемый в стандартные распределительные устройства (слева) с универсальным комплектом для монтажа на DIN-рейку, который подходит для всех модулей RAC01-RAC10 (справа)

Эти примеры показывают, что при использовании переменного тока электронными приборами теряется 15–20% потребляемой энергии. Использование сети постоянного тока в доме позволяет значительно снизить эти потери.

 

Голубая мечта

В настоящее время уже существуют технологии, которые можно интегрировать в существующие сети переменного тока. Одним из примеров может служить преобразователь RAC03-SCR, разработанный компанией RECOM (рис. 4, слева). Он является отличным решением для энергоэффективного питания приборов управления, к примеру, шторами и системами освещения.

Так как приборы управления часто устанавливаются в распределительных коробках, в этом случае самым лучшим решением будет монтаж компактных генераторов на направляющие рейки. Это легко можно сделать с помощью универсального адаптера на DIN-рейку (рис. 4, справа), разработанного компанией RECOM для своих модулей постоянного/переменного тока. Эти модули могут быть индивидуально настроены под мощность в диапазоне 1–10 Вт.

Несомненно, в ближайшем будущем в интеллектуальных домах будет использоваться возобновляемый постоянный ток. А пока почему бы не начать энергосбережение с помощью умных решений?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *